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• Objectives
• Experimental Setup and Test Matrix
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– Emissions of NMHC and BTEX
– PM chemical speciation results

• Conclusions and next step



Objectives

• ARB needs data for 2010-like vehicles before they 
go into production. The retrofit systems of today are 
a glimpse into the production-ready OEM systems of 
the future (i.e., 2007/2010 systems)

• Assessing emission reduction and toxicity relevant to 
the older system



Experimental Setup
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Sample Types Filter Media
Flow rate 
range (lpm) Method Instrument

organic and 
elemental carbon Quartz fiber 38-40

IMPROVE_A*, 
SOP MLD139

DRI Model 
2001

Ionic species PTFE filter 40-45 SOP MLD142 Dionex

PAH TX40 75-80 SOP MLD144
ASE-

GC/MS

• Test protocol follows 40 CFR Part 1065

• Driving Cycle: idling, transient (UDDS), 
and steady state (50mph cruising)

• Ultralow sulfur (<7ppm) fuel



Test Matrix - 1/2                                                            
4 vehicles, 8 configurations

No Aftertreatment - Baseline

Veh#1 1998 Cummins Diesel 11L, 360,000 miles

D
O
C

Uncatalyzed
Filter

50,000 mi

Catalyzed 
Filter

30,000 mi

Veh#2 1999 International Diesel: 7.6L, 40,000 miles

D
O
C

Uncatalyze
d Filter

5,000 mi

V-SCRT®*

Z-SCRT®*

DPX

CRT2® (no sammples)

CRT1®

* SCRT® systems used in this project are development protot ypes not commercial units .

D
O
C

Uncatalyzed
Filter

Oxid
Cat

Urea

50,000 mi 50,000 mi

Vanadium 
SCR

D
O
C

Uncatalyzed
Filter

Oxid
Cat

Urea

50,000 mi 0 mi

Zeolite 
SCR



Test Matrix - 2/2
4 vehicles, 8 configurations

Veh#3

2006 Cummins Diesel w/ Allison Hybrid drive;  5.9L, 1,000 miles18

D
O
C

Catalyzed 
Filter

1,000 mi

Veh#4

2003 Cummins Diesel  5.9L, 50,000 miles

Uncatalyzed
Filter

31,000 mi

Horizon

CCRT®

Comparisons of emissions will focus on Vehicle #1 w ith three 
different aftertreatment technologies.
Comparisons of emissions will focus on Vehicle #1 w ith three 
different aftertreatment technologies.



Preliminary Results: NMHC

The aftertreatment technologies can reduce more than 90% HMHC 
emissions for UDDS and Cruise cycles; but it is only 70% with 
Vanadium SCRT® for the idle mode

UDDS Test vs Cruise Test for NMHC
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Preliminary Results: BTEX

Comparion of benzene emssion rate weight percatage in NMHC  
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• For transient and cruising cycles, high reductions of BTEX with Vanadium SCR®
and Zeolite SCRT®.

• Observe some BTEX species to HMHC mass percentage with SCRT 
technologies were elevated during idle. Similar outcome was observed from the 
CNG bus in Phase I.



Quality Assurance for PM
• High variation for gravimetric 

measurement due to low PM mass 
loading.

– Challenging to compare mass 
concentrations and sum of chemical 
analysis (carbon analysis and ions) 

• Significant sampling artifact 
observed, based on high OC1 and 
OC2 on the backup filter,

– no systematic way of correcting the 
artifacts

• Dominant anions: sulfate and 
nitrate, cations: ammonium

• Charge balance (anions and 
cations)

– More anions than cations; Suspect 
formation of nitric acid and sulfuric acid 
(Ristovski et al 2006, ES&T), not 
neutralized sulfate and nitrate 
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Preliminary Results:
PM Speciation

• Emission rate:
– Baseline: Transient >Cruising > Idling
– Aftertreatment: Cruising>Transient >Idling

• Emission profiles:
– Baseline: carbonaceous compounds
– Aftertreatment: Sulfate and nitrate

• Emission reduction
– With aftertreatment technologies, higher 

reduction efficiency for EC (soot) than OC: 
either less efficient to remove OC or due to 
sampling artifact

– Increased sulfate and nitrate emission 
rates during cruising and UDDS test 
cycles.

– Zeolite SCRT has the least emission 
reduction efficiency of organic carbon and 
nitrate.
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Preliminary Results:
PAHs on filters

• Definition in Phase I and categorize 23 
PAHs to three groups: particle 
associated PAHs, semi-volatile PAHs, 
and volatile PAHs

• Total PAH on filters (V~10m3)
– With or without aftertreatment technologies: 

baseline: UDDS >cruising > idle

• General observation, total PAHs are 
enriched in 

– semi-volatile PAHs: fuoranthene, pyrene
– particle bound PAH emissions: B(a)A, 

Chry, B(b)F, and B(k)F

• Aftertreatment technologies can reduce 
PAH emissions rates by at least three 
order of magnitude for semi-volatle and 
particle bound PAHs.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Total PAH vapor phase
PAH

SemiVol-PAH P-bound-PAH

E
m

is
si

on
 r

at
e 

in
 u

g/
ho

ur

Baseline/1000 V-SCRT Zeo-SCRT
CRT Englehart DPX Hybrid
Horizon

UDDSUDDS



Conclusions

• The aftertreatment technologies can effectively reduce 
PM emissions.

• Analytical and statistical analysis: 
– Low emission level /concentrations for emissions with 

aftertreatment technologies (BTEX and PM)
– Statistic analysis for chemical speciation data based on mass 

fraction (mass balance), due to the high uncertainly for low PM 
mass samples.

– Challenging to assess the emissions variability (N=3)
– Sampling artifact

• Need better understanding of catalyst characteristics/ 
roles in these aftertreatment technologies



Next Step

• On going effort:
– Assessing intra-vehicle emission comparisons and those 

reported in mass/bhp-hr in the literature, with fuel density, 
break-specific fuel consumption, and fuel economy.

– Elements, PAHs on PUF/XAD, biological toxicity results
– Carbonyl and GHG results
– Publications
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